- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Alfaro, R (2)
-
Alvarez, C (2)
-
Araujo, Y Pérez (2)
-
Arteaga-Velázquez, J C (2)
-
Avila_Rojas, D (2)
-
Ayala_Solares, H A (2)
-
Babu, R (2)
-
Belmont-Moreno, E (2)
-
Bernal, A (2)
-
Caballero-Mora, K S (2)
-
Capistrán, T (2)
-
Carramiñana, A (2)
-
Casanova, S (2)
-
Cotzomi, J (2)
-
Depaoli, D (2)
-
Di_Lalla, N (2)
-
Dingus, B L (2)
-
DuVernois, M A (2)
-
Engel, K (2)
-
Ergin, T (2)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Very-high-energy (0.1–100 TeV) gamma-ray emissions were observed in High-Altitude Water Cherenkov (HAWC) data from the lobes of the microquasar SS 433, making them the first set of astrophysical jets that were resolved at TeV energies. In this work, we update the analysis of SS 433 using 2565 days of data from the HAWC observatory. Our analysis reports the detection of a point-like source in the east lobe at a significance of 6.6σand in the west lobe at a significance of 8.2σ. For each jet lobe, we localize the gamma-ray emission and identify a best-fit position. The locations are close to the X-ray emission sites “e1” and “w1” for the east and west lobes, respectively. We analyze the spectral energy distributions and find that the energy spectra of the lobes are consistent with a simple power lawdN/dE∝Eαwith and for the east and west lobes, respectively. The maximum energy of photons from the east and west lobes reaches 56 TeV and 123 TeV, respectively. We compare our observations to various models and conclude that the very-high-energy gamma-ray emission can be produced by a population of electrons that were efficiently accelerated.more » « less
-
Albert, A; Alfaro, R; Alvarez, C; Andrés, A; Arteaga-Velázquez, J C; Avila_Rojas, D; Ayala_Solares, H A; Babu, R; Belmont-Moreno, E; Bernal, A; et al (, The Astrophysical Journal)Abstract The High-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory, located on the side of the Sierra Negra volcano in Mexico, has been fully operational since 2015. The HAWC collaboration has recently significantly improved their extensive air shower reconstruction algorithms, which has notably advanced the observatory performance. The energy resolution for primary gamma rays with energies below 1 TeV was improved by including a noise-suppression algorithm. Corrections have also been made to systematic errors in direction fitting related to the detector and shower plane inclinations, biases in highly inclined showers, and enhancements to the core reconstruction. The angular resolution for gamma rays approaching the HAWC array from large zenith angles (>37°) has improved by a factor of 4 at the highest energies (>70 TeV) as compared to previous reconstructions. The inclusion of a lateral distribution function fit to the extensive air shower footprint on the array to separate gamma-ray primaries from cosmic-ray ones based on the resultingχ2values improved the background rejection performance at all inclinations. At large zenith angles, the improvement in significance is a factor of 4 compared to previous HAWC publications. These enhancements have been verified by observing the Crab Nebula, which is an overhead source for the HAWC Observatory. We show that the sensitivity to Crab-like point sources (E−2.63) with locations overhead to 30° zenith is comparable to or less than 10% of the Crab Nebula’s flux between 2 and 50 TeV. Thanks to these improvements, HAWC can now detect more sources, including the Galactic center.more » « less
An official website of the United States government
